

PROTEOMICS

TOP-DOWN MIDDLE-DOWN BOTTOM-UP

Workflow

MIDDLE-DOWN

TOP-DOWN

Data Evaluation

Strategy Comparison

BOTTOM-UF

Data Evaluation

Digest the protein into small peptides

Well-developed methods

available for protein quantifi-

Higher throughput

leads to the inability to identify protein variants

Loss of natural information

Unable to accurately analyze

the association between **PTMs**

MIDDLE-DOWN

Data Evaluation

This procedure works with 5–20 kDa large polypeptides, produced by limited proteolytic digestion

Several simultaneous

post-translational modifications on longer peptide chains can be analyzed and identified. Compared with BU method, it can analyze a wider range of peptide segments.

Histone post-translational

modification identification

TOP-DOWI

Does not require the laborious chemical or enzymatic digestion

enables full characterization of proteoforms

100% sequence coverage

The complete protein was analyzed by mass spectrome-/ try, and the excellent PTM characterization was achieved.

Lower throughput

Application

Title: Middle-down hybrid chromatography/tandem mass

spectrometry workflow for characterization of combinatorial post-translational modifications in histones

Method: ▶ Combining a RP trap column with subsequent weak cation exchange-hydrophilic interaction LC interfaced directly to high mass accuracy ESI MS/MS using electron transfer dissociation, which enabled automated and efficient separation and sequencing

of hypermodified histone N-terminal tails for unambiguous localization of combinatorial PTMs. **Highlight:**

combined histone marks in histones H3, H4 and H2A were quantified. A total of 713 different combined histone marks were

identified in purified histone H3.

▶ Histone tails from mouse embryonic stem cells were identified in the zeste12 inhibitory gene and 256

Title:

Electrophoresis-Tandem Mass Spectrometry: Identification of 5700 Proteoforms from the Escherichia coli Proteome Method:

Deep Top-Down Proteomics Using Capillary Zone

► Coupling size exclusion chromatography (SEC) and

RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli.

Highlight: ▶ The platform generated high peak capacity (~4000) for separation of intact proteins, leading to the identification of 5700 proteoforms from the Escherichia coli proteome. The data represents a 10-fold improvement in

the number of proteoform identifications compared

https://doi.org/10.1021/acs.analchem.8b00693

with previous CZE-MS/MS studies.

© 2008-2019 Creative Proteomics. All rights reserved.

https://doi.org/10.1002/pmic.201400084